Pitavastatin 4 mg Superior to Pravastatin 40 mg on LDL-C Reduction after 12 and 52 Weeks of Treatment in Patients with HIV Infection and Dyslipidemia with and without Ritonavir-based Therapy

Craig Sponseller, MD1, Stuart Campbell, BBA2, Vladimir Kryzhanovski, MD3, Judith Aberg, MD4

¹Kowa Pharmaceuticals America, Inc., Montgomery, AL, USA; ²Kowa Research Institute, Inc., Morrisville, NC, USA; ³Lilly USA, LLC, Indianapolis, IN, USA; ⁴Icahn School of Medicine at Mount Sinai, New York, NY, USA

BACKGROUND

- Approximately 35 million people worldwide are currently living with HIV/AIDS, including 2.2 million in Europe and 1.2 million in the United States (US).1-3
- Dyslipidemia is a common comorbidity in adults with HIV-1 infection. In the US, for example, dyslipidemia has been reported in 81% of men (median age 47 vrs) and 67% of women (median age 45 vrs) with HIV-1 infection.4
- Contributing factors include the HIV infection itself as well as antiretroviral (ARV) therapy.5 The most deleterious changes in lipid levels are seen with ARV combinations that include protease inhibitors (PIs).
- Statins are the most effective agents for reducing LDL-C.7
- Some statins and PIs have contraindications or dosing restrictions because of the shared metabolic pathway, cytochrome P450 (CYP) 3A4.78
- Ritonavir is a potent inhibitor of CYP 3A4, and is used to "boost" the activity of other Pls.
- The drug-drug interaction between certain statins and PIs can result in elevated statin levels, which lead to an increased risk for muscle-related adverse events (e.g., mylagia or rhabdomyolisis).
- Neither pitavastatin nor pravastatin depend on the CYP enzyme system for their metabolism,7 and neither agent has dose limitations or contraindications when co-administered with PIs according to the recent FDA safety communication.8
- In adults with dyslipidemia, including those with comorbid HIV infection in the INTREPID (HIV-infected patieNts and TREatment with PItavastatin vs. pravastatin for Dyslipidemia) trial, pitavastatin 4 mg has demonstrated significantly greater reductions in LDL-C vs. pravastatin 40 mg after 12 weeks9-12 and 52 weeks11,12 of treatment. Reductions in apolipoprotein B, non-HDL-C, and total cholesterol were also significantly greater for pitavastatin 4 mg.9-12
- The present pre-specified exploratory analysis from INTREPID evaluated the effect of concomitant ritonavir therapy on shortand long-term LDL-C reduction.

References

- 1. Global AIDS Overview. http://aids.gov/federal-resources/aroundthe-world/global-aids-overview/, Accessed 23 March 2015.
- 2. World Health Organization, Europe, Data and statistics, http://www.euro. who.int/en/health-topics/communicable-diseases/hivaids/data-and statistics. Accessed 23 March 2015.
- 3. HIV in the United States: At A Glance. http://www.cdc.gov/hiv/statistics/ basics/ataglance.html, Accessed 23 March 2015.
- 4. Buchacz K, et al. Antivir Ther. 2013;18(1):65-75.
- 5. Calvo M, Martinez E. Curr Opin HIV AIDS. 2014;9(4):332-9.
- 6. Malvestutto CD, Aberg JA. Clev Clin J Med. 2010;77(8):547-56.
- Chauvin B, et al. Clin Pharmacokinet. 2013;52(10):815-31. 8. FDA Drug Safety Communication, March 1, 2012, http://www.fda.gov/ Drugs/DrugSafety/ucm293877.htm, Accessed 25 March 2015.
- 9. Stender S, et al. Eur J Prev Cardiol. 2013;20(1):40-53.
- 10. Morgan RE, et al. J Clin Lipidol, 2012;6(3):280-2.
- seller CA, et al. INTREPID 12-week data. Poster presented at CROI
- 12. Sponseller CA, et al. INTREPID 52-week data. Poster presented at CROI

Disclosures: C. Sponseller is an employee of Kowa Pharmaceuticals America, Inc.; S. Campbell is an employee of Kowa Research Institute, Inc.: V. Kryzhanovski is an employee of Lilly USA, LLC: J. Aberg was an INTREPID study investigator and is a consultant to Kowa Pharmaceuticals America Inc.

Acknowledgments: Lorraine R. Baer, PharmD (Baer PharMed Consulting, Ltd.) for content development support

OBJECTIVE

To determine whether ritonavir use affects the reduction in LDL-C.

METHODS

- INTREPID was a Phase 4, multicenter, 12-week, randomized, double-blind, double-dummy superiority study followed by a 40-week safety extension study (NCT01301066).
- There was a minimum 4-week washout/dietary stabilization period
- Eligible subjects were randomized in a 1:1 ratio, stratified by the presence or absence of viral hepatitis B or C, to either pitavastatin 4 mg or prayastatin 40 mg. Dosing was once daily in the morning.
- Pitavastatin 4 mg: subjects received 1 tablet of pitavastatin 4 mg + 1 placebo capsule.
- Pravastatin 40 mg: subjects received 1 capsule of pravastatin 40 mg (2 tablets of pravastatin 20 mg overencapsulated) +
- Blood samples for determination of lipid parameters were drawn following an overnight fast.

Study Population

 Adults (18–70 yrs) with documented HIV infection and documented dyslipidemia.

Kev inclusion criteria:

- ◆ ARV therapy for ≥6 months prior to randomization, with no change in regimen for ≥3 months prior to randomization
- HIV-1 RNA <200 copies/mL and CD4 cell count >200 cells/mm for ≥3 months prior to randomization.
- Fasting serum LDL-C of 130-220 mg/dL (inclusive) and triglycerides ≤400 mg/dL after the minimum 4-week washout/ dietary stabilization period.

Key exclusion criteria

- Use of darunavir
- Presence of diabetes or cardiovascular disease

- **Primary:** Superiority of pitavastatin 4 mg vs. pravastatin 40 mg based on adjusted mean % change in fasting serum LDL-C from Baseline to Week 12.
- **Exploratory:** Effect of pitavastatin 4 mg and prayastatin 40 mg on LDL-C according to concomitant ritonavir use (either ongoing or with a start or end date after the first dose of study drug).

- Analyses were conducted using the modified intention-to-treat (mITT) population, defined as all randomized subjects who received at least 1 dose of study drug and had at least 1 on-treatment lipid assessment.
- A last observation carried forward (LOCF) methodology and an analysis of covariance (ANCOVA) model were used to determine % change in LDL-C as the dependent variable and treatment as the independent variable, after adjusting for site, viral hepatitis B/C infection status at randomization (Yes/No), and concomitant
- For the ritonavir data, where data failed a test of normality, the treatments were compared using a nonparametric van Elteren test to confirm the ANCOVA conclusions; p-values were 2-sided and

RESULTS

Table 1. Baseline Demographics/Characteristics (All Randomized Subjects)

	Pitavastatin	Pravastatin
D	4 mg	40 mg
Demographic/ Characteristic	n=126	n=126
Age, yrs	50.1 (7.5)	49.2 (8.7)
Males, n (%)	106 (84.1)	111 (88.1)
Race, n (%)		
Caucasian	107 (84.9)	96 (76.2)
African-American	16 (12.7)	23 (18.3)
Other	3 (2.4)	7 (5.6)
Ethnicity,		
Not Hispanic/Latino, n (%)	95 (75.4)	92 (73.0)
Body mass index, kg/m ²	27.2 (4.5)	28.2 (4.9)
Framingham 10-yr risk CHD assessment score, %	6.6 (5.1)	6.4 (4.8)
Duration of HIV, yrs	12.7 (7.7)	12.5 (7.2)
Hepatitis B or C, n (%)	12 (9.5)	13 (10.3)
CD4 cell count, cells/mm³	648.5 (246.8)	563.7 (211.3)
HIV-1 RNA, log copies	1.2 (0.3)	1.1 (0.2)
Ritonavir use, n (%)	42 (33.3)	45 (35.7)

Note: The study period was February 2011-March 2013; this study population falls outside the 4 major Statin Benefit groups according to the 2013 ACC/AHA cholesterol guidelines

Table 2. LDL-C Measurements (mITT Population)

	Pitavastatin 4 mg		Pravastatin 40 mg		
Study Visit	LDL-C, mean, mg/dL				
	Ritonavir	No	Ritonavir	No	
VISIC		Ritonavir		Ritonavir	
Baseline	n=39	n=82	n=45	n=81	
	152.0	156.6	153.7	155.1	
Week 12	n=38	n=82	n=45	n=80	
	110.3	103.5	120.4	121.8	
Week 52	n=34	n=62	n=33	n=57	
	109.6	108.4	124.8	120.6	

Figure 1. Primary Study Results: LDL-C: Mean Percent Change from Baseline to Week 12 and Week 52

• Pitavastatin 4 mg was superior to pravastatin 40 mg on LDL-C lowering at Week 12 (primary endpoint).

Figure 2. Week 12: Mean Percent Change from Baseline in LDL-C

LDL-C Reduction (Adjusted for Site, Hepatitis B/C, and

• The change from Baseline to Week 12 in LDL-C was statistically significant (P < 0.001) for each treatment.

Figure 5. Week 52: Pitavastatin vs. Pravastatin in LDL-C Reduction (Adjusted for Site, Hepatitis B/C, and Ritonavir Use)

The change from Baseline to Week 52 in LDL-C was statistically significant (P < 0.001) for each treatment

	Pitavastatin 4 mg (n=126)	Pravastatii 40 mg (n=126)
	Number of	Subjects (%)
Treatment-Emergent Adv	erse Event (TEA	E)
Any TEAE	85 (67.5)	88 (69.8)
Treatment-related TEAE	16 (12.7)	12 (9.5)
Treatment-emergent serious adverse event	7 (5.6)	3 (2.4)
Deaths	0	0
Discontinuations due to T	EAEs	
Any discontinuation due to TEAEs	6 (4.8)	5 (4.0)
Upper abdominal pain	2 (1.6)	0
Diarrhea	2 (1.6)	0
Blood creatine kinase increased	1 (0.8)	1 (0.8)
Nausea	1 (0.8)	1 (0.8)
Myalgia	1 (0.8)	1 (0.8)
Dizziness	1 (0.8)	0
Fatigue	1 (0.8)	0
Hyperhidrosis	1 (0.8)	0
Cerebrovascular accident	0	1 (0.8)
Muscular weakness	0	1 (0.8)
Most Common (occurring group) TEAEs	in >5% in eithe	treatment
Diarrhea	12 (9.5)	4 (3.2)
Bronchitis	8 (6.3)	3 (2.4)
Nasopharyngitis	7 (5.6)	6 (4.8)
Headache	7 (5.6)	3 (2.4)
Upper respiratory tract infection	5 (4.0)	14 (11.1)
Sinusitis	4 (3.2)	10 (7.9)
Nausea	4 (3.2)	7 (5.6)
Musculoskeletal and Con	nective Tissue D	isorders
Back pain	4 (3.2)	4 (3.2)
Arthralgia	3 (2.4)	4 (3.2)
Pain in extremity	2 (1.6)	4 (3.2)
Myalgia	2 (1.6)	3 (2.4)
Virologic Status		
Virologic failure ^a	4 (3.2)	6 (4.8)
/irologic failure was defined as a	n HIV-1 RNA value >	200 copies/mL a

a >0.3 log increase from baseline

SUMMARY

- Pitavastatin 4 mg and pravastatin 40 mg significantly reduced LDL-C after 12 and 52 weeks of treatment, with or without ritonavir (ANCOVA, P<0.001).
- The reductions in LDL-C were significantly greater with pitavastatin — LS mean percent treatment differences: Week 12, -9.8%; Week 52, -8.3% — van Elteren, P<0.001

CONCLUSIONS

- In the overall study population:
- Pitavastatin 4 mg demonstrated a superior reduction in LDL-C compared with pravastatin 40 mg in HIV-infected adults with dyslipidemia at Week 12.
- The reductions in LDL-C at Week 12 and Week 52 were significantly greater for pitavastatin 4 mg vs. pravastatin 40 mg.
- Use of ritonavir did not change the primary results of the study, i.e., pitavastatin reduced LDL-C significantly more than prayastatin after 12 and 52 weeks of therapy.
- Use of ritonavir does not affect the lipid-lowering effect of pitavastatin or pravastatin.