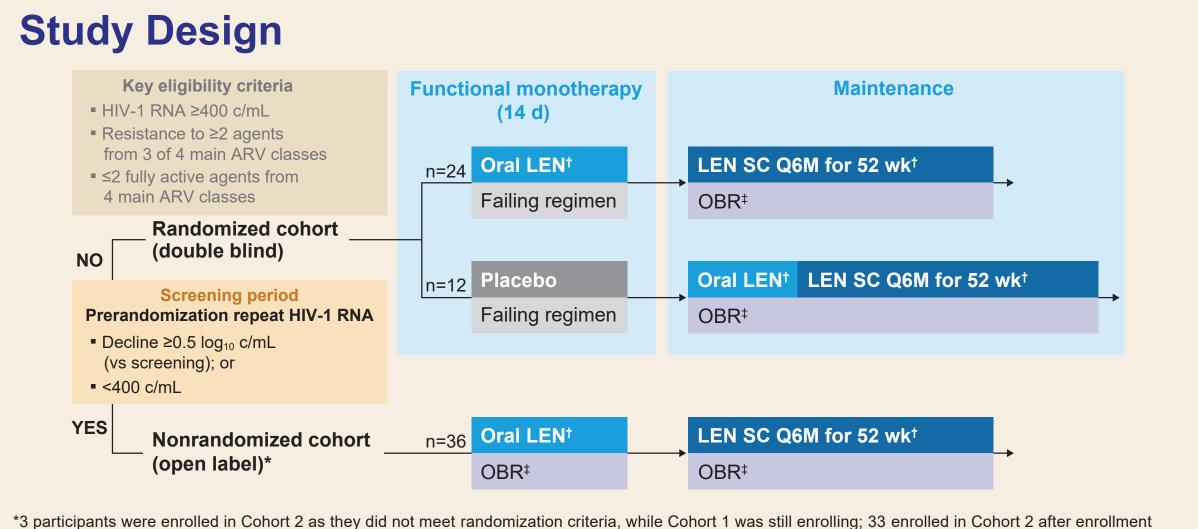

Long-Acting Lenacapavir in People With Multidrug-Resistant HIV-1: Week 52 Results Onyema Ogbuagu¹, Sorana Segal-Maurer², Cynthia Brinson³, Ploenchan Chetchotisakd⁴, Joseph McGowan⁵, Kimberly Workowski⁶, Hui Wang⁷, Nicolas Margot⁷, Hadas Dvory-Sobol⁷, Martin Rhee⁷, Jared Baeten⁷, Thomas Deem⁷, Jean-Michel Molina⁸

Introduction

EC₅₀, half-maximal effective concentration; Gag, group antigens; Pol, polyprotei


- LEN is a novel, highly potent, long-acting, first-in-class, HIV-1 capsid inhibitor
- LEN can meet significant unmet medical needs:
- A new mechanism of action for heavily treatment-experienced (HTE) people with multidrugresistant (MDR) HIV-1 and limited treatment options
- Reduction of daily pill burden through less frequent dosing for treatment and prevention
- ♦ Highly desirable in vitro profile with picomolar antiviral activity (EC₅₀: 50–100 pM) - Retains full activity against nucleoside reverse-transcriptase inhibitor (NRTI)-, non-NRTI (NNRTI)–, integrase strand transfer inhibitor (INSTI)–, and protease inhibitor (PI)–resistant
- mutants³⁻ – No observed preexisting resistance⁶
- In treatment-naïve people with HIV-1 (PWH), LEN + emtricitabine/tenofovir alafenamide led to 94% virologic suppression at Week 287
- Previously in the CAPELLA Study (NCT04150068) in HTE people with MDR HIV-1: - LEN achieved its primary endpoint as a functional monotherapy when added to a failing regimen⁸:
 - Participants with ≥ 0.5 -log₁₀ decline: LEN 88% vs placebo 17% (p<0.001)
 - Mean HIV-1 RNA decline: LEN 1.9 vs placebo 0.3 log₁₀ (p<0.001)

- LEN + optimized background regimen (OBR) led to 81% virologic suppression at Week 269

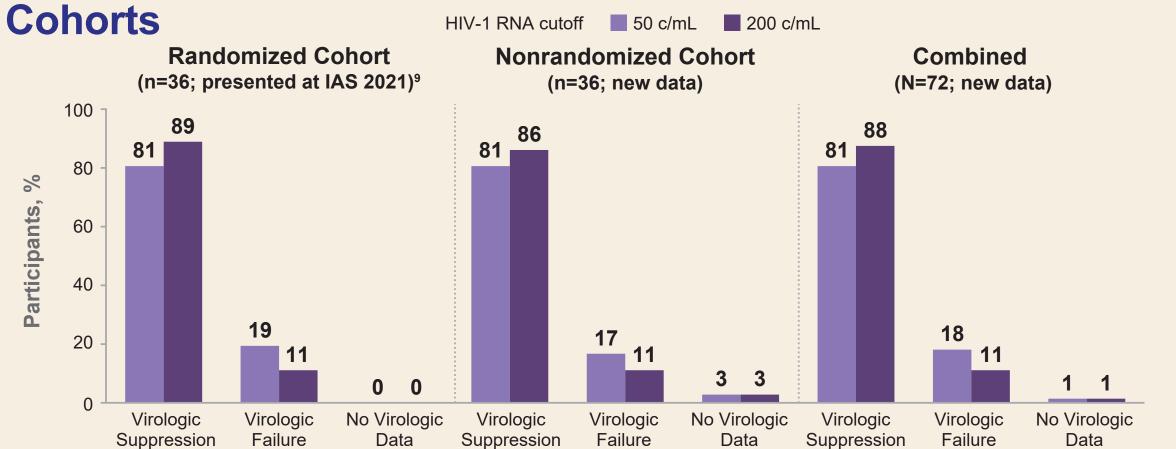
Objectives

To evaluate the safety and efficacy (using the FDA Snapshot algorithm) of LEN in combination with an OBR at Weeks 26 and 52

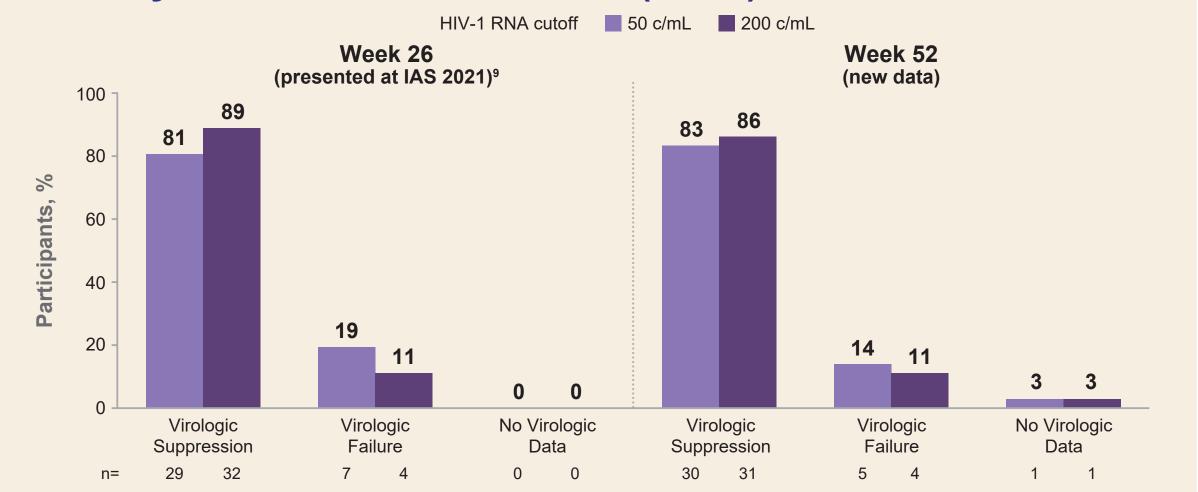
Methods

of Cohort 1 was completed; [†]Administered as 600 mg on Days 1 and 2, and 300 mg on Day 8; LEN SC administered as 927 mg (2 x 1.5 mL) in abdomen on Day 15; [‡]Investigational agents, such as fostemsavir, were allowed; atazanavir (ATV), ATV/cobicistat, ATV/ritonavir, efavirenz, entecavir, tipranavir, and nevirapine were not allowed. ARV, antiretroviral; d, day; Q6M, every 6 months; SC, subcutaneous; wk, week.

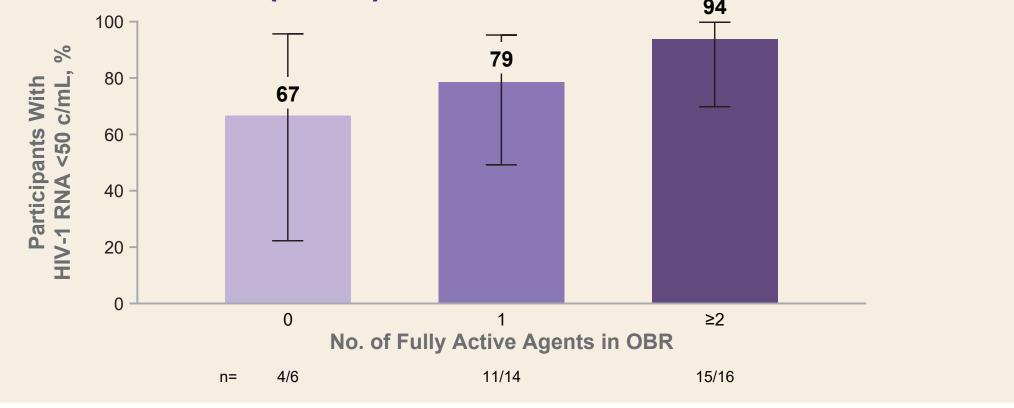
- Week 52 efficacy was summarized only for the randomized cohort (n=36), as most participants in the nonrandomized cohort have not yet reached Week 52
- Safety was summarized for both the randomized and nonrandomized cohorts (N=72)


¹Yale University School of Medicine, New Haven, CT, USA. ²New York Presbyterian Queens, Flushing, NY, USA. ⁴Srinagarind Hospital, Manhasset, NY, USA. ⁴Srinagarind Hospital, Manhasset, NY, USA. ⁴Srinagarind Hospital, Khon Kaen, Thailand. ⁵North Shore University, Atlanta, GA, USA. ⁴Srinagarind Hospital, Manhasset, NY, USA. ⁴Srinagarind Hospital, Khon Kaen, Thailand. ⁵North Shore University, Atlanta, GA, USA. ⁴Srinagarind Hospital, Manhasset, NY, USA

Results

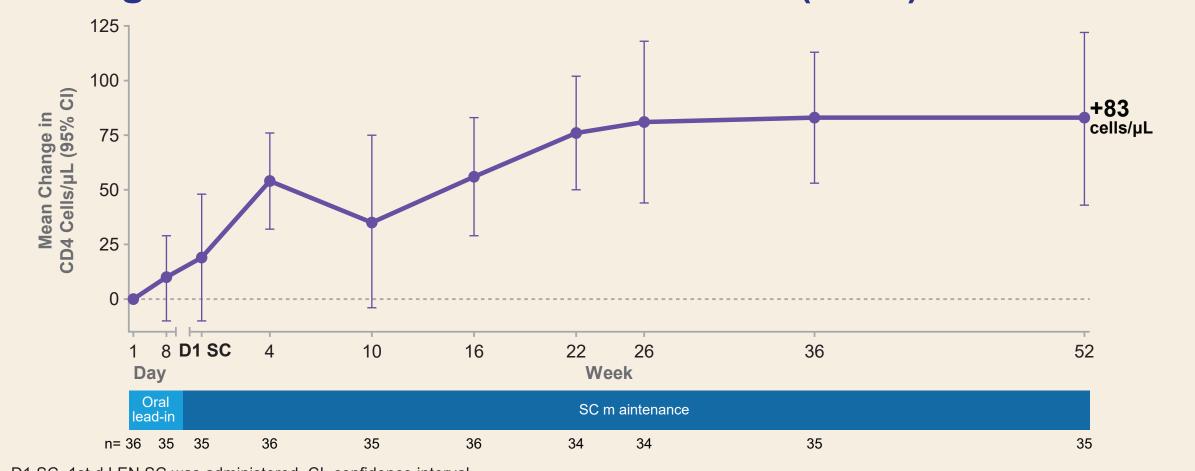

aseline Characterist	Randomized		Nonrandomized	Total
	LEN: n=24	Placebo: n=12	LEN: n=36	N=72
Age, median (range), years	55 (24–71)	54 (27–59)	49 (23–78)	52 (23–78)
Sex, % female at birth	29	25	22	25
Race, % Black	42	55	31	38
Ethnicity, % Hispanic/Latinx	25	36	14	21
HIV-1 RNA, median (range), log ₁₀ c/mL	4.2 (2.3–5.4)	4.9 (4.3–5.3)	4.5 (1.3–5.7)	4.5 (1.3–5.7)
>75,000 c/mL, %	17	50	28	28
CD4 count, median (range), cells/µL	172 (16–827)	85 (6–237)	195 (3–1296)	150 (3–1296)
<200 cells/µL, %	67	92	53	64
No. of prior ARV agents, median (range)	9 (2–24)	9 (3–22)	13 (3–25)	11 (2–25)
No. of fully active agents in OBR, %				
0	17	17	17	17
1	29	58	36	38
≥2	54	25	47	46
Known resistance to ≥2 drugs in class, %				
NRTI	96	100	100	99
NNRTI	92	100	100	97
INSTI	83	58	64	69
PI	83	67	83	81

CD4, cluster of differentiation-


Efficacy at Week 26 in Randomized and Nonrandomized

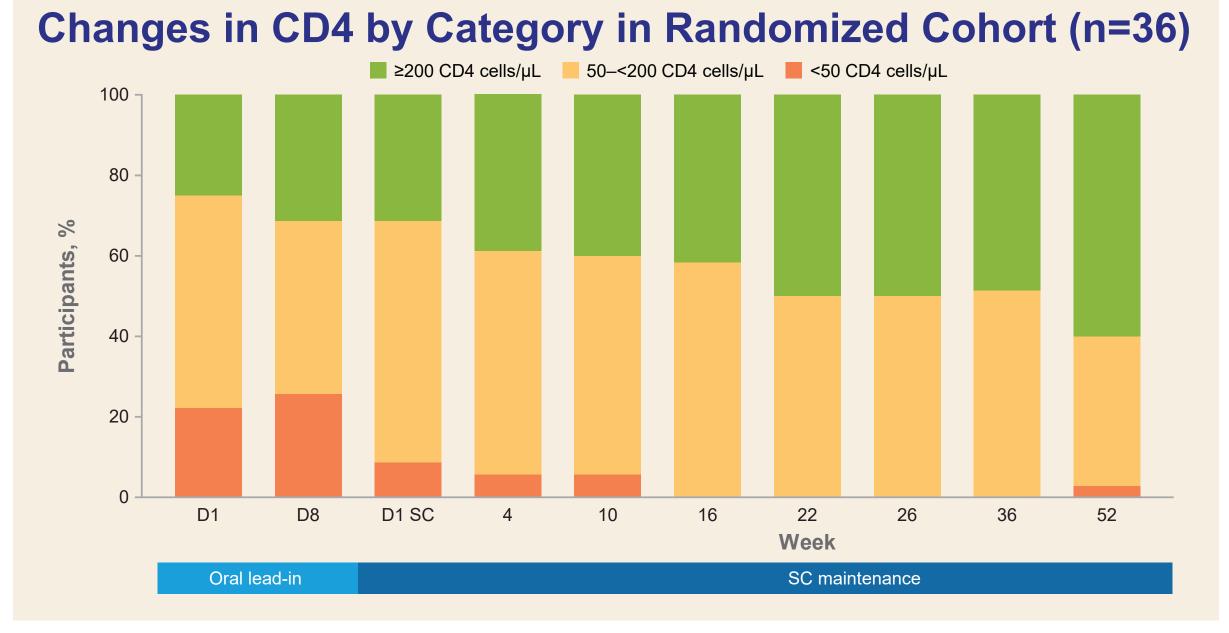
Efficacy in Randomized Cohort (n=36)

Efficacy by No. of Fully Active Agents in OBR at Week 52 in **Randomized Cohort (n=36)**


Emergent LEN Resistance*

n (%)	Randomized Cohort: n=36 (presented at IAS 2021, EACS 2021) ^{9,10}	Nonrandomized Cohort: n=36
Participants meeting criteria for resistance testing	11 (31)	10 (28)
Emergent LEN resistance [†]	4 (11)	4 (11)
M66I	4	2
Q67H/K/N	1	2
K70H/N/R/S	1	3
N74D/H/S	3	0
A105S/T	3	1
T107A/C/N	1	3

Capsid genotypic and phenotypic resistance testing performed on any participants with confirmed HIV-1 RNA ≥50 c/mL and <1 log₁₀ HIV-1 RNA reduction fro Day 1 at Week 4 visit, at any visit after achieving HIV-1 RNA <50 c/mL and rebound to \geq 50 c/mL, and at any visit with >1 log₁₀ increase from nadir; HIV-1, rotease, reverse-transcriptase, and integrase genotypic and phenotypic testing were performed if rebound or suboptimal virologic response were confirmed; Developed during maintenance period (Week 4 [n=5], Week 10 [n=2], and Week 26 [n=1]).


- No additional participants with LEN resistance were observed in the randomized cohort after Week 26
- ♦ All 8 participants with emergent LEN resistance remained on LEN - All 8 participants were at high risk of emergent LEN resistance: no fully active drugs in OBR (n=4) or inadequate adherence to OBR (n=4)
- 3 participants resuppressed at a later visit: 1 without and 2 with OBR change

Changes in CD4 in Randomized Cohort (n=36)

D1 SC, 1st d LEN SC was administered. CI, confidence interval

- ♦ Randomized cohort: mean change in CD4, cells/µL (95% CI): 81 (44, 118) at Week 26; 83 (43, 122) at Week 52
- ♦ Nonrandomized cohort: mean change in CD4, cells/µL (95% CI): 98 (59, 136) at Week 26

- LEN led to clinically meaningful improvement in CD4 cell count
- Proportion of participants with very low CD4 (<50 cells/µL) decreased from 22%</p> (8/36) at baseline to 3% (1/36) at Week 52
- ♦ Proportion of participants with ≥200 CD4 cells/µL increased from 25% (9/36) at baseline to 60% (21/36) at Week 52

Adverse Events (excluding ISRs)*

≥10% Total in Any Grade, % (n)	Total LEN: N=72	
Diarrhea	13 (9)	
Nausea	13 (9)	
COVID-19	11 (8)	

*Serious adverse events (AEs) not related to study drug: malignant neoplasm and dizziness (n=1); abdominal pain, pancreatic mass, Clostridium difficile colitis and angina pectoris (n=1); anal squamous cell carcinoma, proctalgia, impaired healing, and anal cancer (n=1); femoral neck fracture (n=1); COVID-19 (n=2); pneumonia (n=1); and septic shock, renal impairment, and shock (n=1). ISRs, injection-site reactions.

- Duration of follow up: median 376 d (interquartile range: 306, 501)
- ♦ 70 participants with \geq 197 d of follow-up and 36 participants with \geq 379 d of follow-up
- No serious AEs were related to study drug
- I participant had a serious AE of malignant neoplasm with a fatal outcome and not related to study drug

Incidence of ISRs Related to SC LEN*

ISR Types, %	After 1st SC Dose at Week 1 N=72	After 2nd SC Dose at Week 26 n=70	Median Duration, d
Swelling	26	13	12
Erythema	24	11	6
Pain	22	21	3
Nodule	22	11	180
Induration	11	10	118

*Only includes AEs related to LEN and excludes those not related to it.

- Mostly Grade 1 or 2 ISRs
- ◆ No Grade 4 ISRs, but 2 participants had Grade 3: 1 participant with swelling and erythema, which resolved in 4 and 8 d, respectively, and 1 participant with pain, which resolved in 1 d
- All nodules were Grade 1, except in 1 participant who had 2 AEs of Grade 2 nodules, each after the 2nd and 3rd injections (both resolved after 3 d)
- 1 participant discontinued study drug at Week 52 due to an ISR (nodule; Grade 1)

Grade 3 or 4 Laboratory Abnormalities

Laboratory Abnormality, % (n)	Total: N=72	
Any Grade 3 or 4	29 (21)	
≥5% in total		
Low creatinine clearance (eGFR)*	14 (10)	
Elevated creatinine [†]	13 (9)	
Glycosuria	6 (4)	
Nonfasting/fasting hyperglycemia	6 (3)	

*Per Division of AIDS scale, Grade 3 creatinine clearance is <60–30 mL/min or 30–<50% decrease from baseline; [†]Grade 3 creatinine is >1.8–<3.5 x upper limit of normal or increase to 1.5–<2.0 x baseline. eGFR, estimated glomerular filtration rate.

- None of the Grade 3 or 4 laboratory abnormalities were clinically relevant
- Low creatinine clearance/eGFR and high creatinine were transient or unconfirmed abnormalities
- Hyperglycemia and glycosuria were transient, unconfirmed, or related to underlying diabetes

Conclusions

- In HTE PWH with limited treatment options due to MDR:
- LEN in combination with an OBR led to high rates of virologic suppression at Week 52 (83%)
- LEN led to clinically meaningful increases in CD4 counts at Week 52
- LEN was well tolerated, with only 1 ISR leading to discontinuation
- These data support the ongoing evaluation of LEN for treatment and prevention of HIV-1 infection
- In HTE people with MDR HIV
- In treatment-naïve and -experienced PWH in combination with other agents
- In people who could benefit from pre-exposure prophylaxis

References: 1. Link JO, et al. Nature 2020;584:614-8; 2. Zila V, et al. Cell 2021;184:1032-46.e18; 3. Margot N, et al. Antimicrob Agents Chemother 2021;65:e02057-20; 4. VanderVeen L, et al. CRO 2021, oral 128; 5. Yant SR, et al. CROI 2019, poster 480; 6. Marcelin AG, et al. J Antimicrob Chemother 2020;75:1588-90; 7. Gupta SK, et al. IAS 2021, oral OALB0302; 8. Segal-Maurer S, et al. CROI 2021, oral 127; 9. Molina JM, et al. IAS 2021, oral OALX01LB02; 10. Margot N, et al. EACS 2021, oral OS1/1 Acknowledgments: We extend our thanks to the study participants and their families, and the participating study investigators and staff: Canada: J Brunetta, B Trottier; Dominican Republic: E Koenig; France: J-M Molina, S Ronot-Bregigeon, Y Yazdanpanah; Germany: H-J Stellbrink; Italy: A Antinori, A Castagna, F Castelli; Japan: T Shirasaka, Y Yokomaku; South Africa: M Rassool; Spain: J Mallolas; Taiwan: C-C Hung; Thailand: A Avihingsanon, P Chetchotisakd, K Siripassorn, W Ratanasuwan; USA: DS Berger, M Berhe, C Brinson, CM Creticos, GE Crofoot, E DeJesus, D Hagins, T Hodge, K Lichtenstein, JP McGowan, O Ogbuagu, O Osiyemi, GJ Richmond, MN Ramgopal, PJ Ruane, W Sanchez, S Segal-Maurer, J Sims, GI Sinclair, DA Wheeler, A Wiznia, K Workowski, C Zurawski. This study was funded by Gilead Sciences, Inc. Editing and production assistance were provided by BioScience Communications, New York, NY, funded by Gilead.